Auxin Influx Carrier AUX1 Confers Acid Resistance for Arabidopsis Root Elongation Through the Regulation of Plasma Membrane H+-ATPase
نویسندگان
چکیده
The plant plasma membrane (PM) H+-ATPase regulates pH homeostasis and cell elongation in roots through the formation of an electrochemical H+ gradient across the PM and a decrease in apoplastic pH; however, the detailed signaling for the regulation of PM H+-ATPases remains unclear. Here, we show that an auxin influx carrier, AUXIN RESISTANT1 (AUX1), is required for the maintenance of PM H+-ATPase activity and proper root elongation. We isolated a low pH-hypersensitive 1 (loph1) mutant by a genetic screen of Arabidopsis thaliana on low pH agar plates. The loph1 mutant is a loss-of-function mutant of the AUX1 gene and exhibits a root growth retardation restricted to the low pH condition. The ATP hydrolysis and H+ extrusion activities of the PM H+-ATPase were reduced in loph1 roots. Furthermore, the phosphorylation of the penultimate threonine of the PM H+-ATPase was reduced in loph1 roots under both normal and low pH conditions without reduction of the amount of PM H+-ATPase. Expression of the DR5:GUS reporter gene and auxin-responsive genes suggested that endogenous auxin levels were lower in loph1 roots than in the wild type. The aux1-7 mutant roots also exhibited root growth retardation in the low pH condition like the loph1 roots. These results indicate that AUX1 positively regulates the PM H+-ATPase activity through maintenance of the auxin accumulation in root tips, and this process may serve to maintain root elongation especially under low pH conditions.
منابع مشابه
Cytokinin acts through the auxin influx carrier AUX1 to regulate cell elongation in the root.
Hormonal interactions are crucial for plant development. In Arabidopsis, cytokinins inhibit root growth through effects on cell proliferation and cell elongation. Here, we define key mechanistic elements in a regulatory network by which cytokinin inhibits root cell elongation in concert with the hormones auxin and ethylene. The auxin importer AUX1 functions as a positive regulator of cytokinin ...
متن کاملAUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues.
Plants employ a specialized transport system composed of separate influx and efflux carriers to mobilize the plant hormone auxin between its site(s) of synthesis and action. Mutations within the permease-like AUX1 protein significantly reduce the rate of carrier-mediated auxin uptake within Arabidopsis roots, conferring an agravitropic phenotype. We are able to bypass the defect within auxin up...
متن کاملArabidopsis aux1rcr1 mutation alters AUXIN RESISTANT1 targeting and prevents expression of the auxin reporter DR5:GUS in the root apex
Multilevel interactions of the plant hormones ethylene and auxin coordinately and synergistically regulate many aspects of plant growth and development. This study isolated the AUXIN RESISTANT1 (AUX1) allele aux1(rcr1) (RCR1 for REVERSING CTR1-10 ROOT1) that suppressed the root growth inhibition conferred by the constitutive ethylene-response constitutive triple response1-10 (ctr1-10) allele. T...
متن کاملRole of the AtClC genes in regulation of root elongation in Arabidopsis
The protein family of anion channel (ClC) constitute a family of transmembrane trnsporters that either function as anion channel or as H+/anion exchanger. The expression of three genes of AtClCa, AtClCb and AtClCd in the model plant Arabidopsis thaliana were silenced by a T-DNA insertion . When the pH of the medium was slightly acidic the length of the primary root of plants with a disrupted At...
متن کاملAuxin transport: providing a sense of direction during plant development.
Auxins are key regulators of plant development. Plants employ a specialized delivery system termed polar auxin transport to convey indole-3-acetic acid from source to target tissues. Auxin transport is mediated by the combined activities of specialized influx and efflux carriers. Mutational approaches in the model plant, Arabidopsis thaliana, have led to the molecular genetic characterization o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 57 شماره
صفحات -
تاریخ انتشار 2016